and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
AND2(true, X) -> ACTIVATE1(X)
ADD2(0, X) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> S1(X)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
ACTIVATE1(n__from1(X)) -> FROM1(X)
IF3(true, X, Y) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> S1(n__add2(activate1(X), activate1(Y)))
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Y)
ADD2(s1(X), Y) -> ACTIVATE1(X)
IF3(false, X, Y) -> ACTIVATE1(Y)
ADD2(s1(X), Y) -> ACTIVATE1(Y)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
AND2(true, X) -> ACTIVATE1(X)
ADD2(0, X) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ACTIVATE1(n__s1(X)) -> S1(X)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
ACTIVATE1(n__from1(X)) -> FROM1(X)
IF3(true, X, Y) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> S1(n__add2(activate1(X), activate1(Y)))
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Y)
ADD2(s1(X), Y) -> ACTIVATE1(X)
IF3(false, X, Y) -> ACTIVATE1(Y)
ADD2(s1(X), Y) -> ACTIVATE1(Y)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
ADD2(0, X) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> ACTIVATE1(Y)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__from1(X)) -> FROM1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Y)
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ADD2(0, X) -> ACTIVATE1(X)
Used ordering: Polynomial Order [17,21] with Interpretation:
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> ACTIVATE1(Y)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
ACTIVATE1(n__from1(X)) -> FROM1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Y)
POL( ADD2(x1, x2) ) = x1 + x2
POL( 0 ) = 1
POL( ACTIVATE1(x1) ) = max{0, x1 - 1}
POL( FIRST2(x1, x2) ) = max{0, x1 + x2 - 1}
POL( s1(x1) ) = x1
POL( cons2(x1, x2) ) = x1 + x2 + 1
POL( n__add2(x1, x2) ) = x1 + x2 + 1
POL( FROM1(x1) ) = max{0, x1 - 1}
POL( n__first2(x1, x2) ) = x1 + x2
POL( n__from1(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> ACTIVATE1(X)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
ADD2(s1(X), Y) -> ACTIVATE1(Y)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
ACTIVATE1(n__from1(X)) -> FROM1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Y)
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(X)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
FIRST2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Y)
Used ordering: Polynomial Order [17,21] with Interpretation:
ADD2(s1(X), Y) -> ACTIVATE1(X)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
ADD2(s1(X), Y) -> ACTIVATE1(Y)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
ACTIVATE1(n__from1(X)) -> FROM1(X)
POL( FIRST2(x1, x2) ) = max{0, x1 + x2 - 1}
POL( s1(x1) ) = x1 + 1
POL( cons2(x1, x2) ) = x1 + x2 + 1
POL( ACTIVATE1(x1) ) = max{0, x1 - 1}
POL( ADD2(x1, x2) ) = max{0, x1 + x2 - 1}
POL( n__add2(x1, x2) ) = x1 + x2
POL( n__first2(x1, x2) ) = x1 + x2
POL( FROM1(x1) ) = max{0, x1 - 1}
POL( n__from1(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
ADD2(s1(X), Y) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> ACTIVATE1(Y)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
ACTIVATE1(n__first2(X1, X2)) -> FIRST2(X1, X2)
ACTIVATE1(n__from1(X)) -> FROM1(X)
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
ADD2(s1(X), Y) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> ACTIVATE1(Y)
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
ACTIVATE1(n__from1(X)) -> FROM1(X)
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ADD2(s1(X), Y) -> ACTIVATE1(X)
ADD2(s1(X), Y) -> ACTIVATE1(Y)
Used ordering: Polynomial Order [17,21] with Interpretation:
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
ACTIVATE1(n__from1(X)) -> FROM1(X)
POL( ADD2(x1, x2) ) = x1 + x2
POL( s1(x1) ) = x1 + 1
POL( ACTIVATE1(x1) ) = max{0, x1 - 1}
POL( n__add2(x1, x2) ) = x1 + x2 + 1
POL( FROM1(x1) ) = max{0, x1 - 1}
POL( n__from1(x1) ) = x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE1(n__add2(X1, X2)) -> ADD2(X1, X2)
FROM1(X) -> ACTIVATE1(X)
ACTIVATE1(n__from1(X)) -> FROM1(X)
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
FROM1(X) -> ACTIVATE1(X)
ACTIVATE1(n__from1(X)) -> FROM1(X)
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FROM1(X) -> ACTIVATE1(X)
Used ordering: Polynomial Order [17,21] with Interpretation:
ACTIVATE1(n__from1(X)) -> FROM1(X)
POL( FROM1(x1) ) = x1 + 1
POL( ACTIVATE1(x1) ) = x1
POL( n__from1(x1) ) = x1 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
ACTIVATE1(n__from1(X)) -> FROM1(X)
and2(true, X) -> activate1(X)
and2(false, Y) -> false
if3(true, X, Y) -> activate1(X)
if3(false, X, Y) -> activate1(Y)
add2(0, X) -> activate1(X)
add2(s1(X), Y) -> s1(n__add2(activate1(X), activate1(Y)))
first2(0, X) -> nil
first2(s1(X), cons2(Y, Z)) -> cons2(activate1(Y), n__first2(activate1(X), activate1(Z)))
from1(X) -> cons2(activate1(X), n__from1(n__s1(activate1(X))))
add2(X1, X2) -> n__add2(X1, X2)
first2(X1, X2) -> n__first2(X1, X2)
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
activate1(n__add2(X1, X2)) -> add2(X1, X2)
activate1(n__first2(X1, X2)) -> first2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(n__s1(X)) -> s1(X)
activate1(X) -> X